Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters.
نویسندگان
چکیده
In many yeast species, including Kluyveromyces lactis, growth on certain sugars (such as galactose, raffinose, and maltose) occurs only under respiratory conditions. If respiration is blocked by inhibitors, mutation, or anaerobiosis, growth does not take place. This apparent dependence on respiration for the utilization of certain sugars has often been suspected to be associated with the mechanism of the sugar uptake step. We hypothesized that in many yeast species, the permease activities for these sugars are not sufficient to ensure the high substrate flow that is necessary for fermentative growth. By introducing additional sugar permease genes, we have obtained K. lactis strains that were capable of growing on galactose and raffinose in the absence of respiration. High dosages of both the permease and maltase genes were indeed necessary for K. lactis cells to grow on maltose in the absence of respiration. These results strongly suggest that the sugar uptake step is the major bottleneck in the fermentative assimilation of certain sugars in K. lactis and probably in many other yeasts.
منابع مشابه
Carbohydrate and energy-yielding metabolism in non-conventional yeasts.
Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it ...
متن کاملMolecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease.
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transpo...
متن کاملMetabolic engineering for improved fermentation of pentoses by yeasts
The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) red...
متن کاملPotential Role of Sugar Transporters in Cancer and Their Relationship with Anticancer Therapy
Sugars, primarily glucose and fructose, are the main energy source of cells. Because of their hydrophilic nature, cells use a number of transporter proteins to introduce sugars through their plasma membrane. Cancer cells are well known to display an enhanced sugar uptake and consumption. In fact, sugar transporters are deregulated in cancer cells so they incorporate higher amounts of sugar than...
متن کاملA history of research on yeasts 7: enzymic adaptation and regulation.
Introduction: the scope of this article 704 Dienert’s work on adaptation of yeast to galactose 707 Enzymic adaptation or selection of mutants? 709 Galactose fermentation by yeasts 713 Monod’s work on lactose utilization by Escherichia coli 714 Gratuitous induction 716 ‘Permeases’: transport of metabolites into the cells 718 Carbon catabolite repression 720 The operon 722 The galactose pathway i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 184 2 شماره
صفحات -
تاریخ انتشار 2002